

CERN run (June 2002)

Objectives

2003 (2004?):

EM data to benchmark the simulations

2002:

- get acquainted with the environment
- get real data with current CDEs: shower profile...
- establish calibration procedure from E deposited by single-charged MIPs (muons) up (needed for GSI)

Experimental method

1 week of beam time on the H4 beam line (many thanks to CMS)

Detectors: 8 CsI crystals from AMCRYS, Ukraine

arranged in 2 crossed layers of 4

positioned on a moving table

Electronics: mostly home made

preamp + 2 sets of shaping amplifiers

low-gain "x1", high-gain "x20"

commercial CAMAC ADCs (ORTEC AD811)

Trigger: 2x2x0.2 cm³ plastic scintillator located 10m in front

of the detector. Count rate: 500-1000 Hz

"Converter": 15x15 cm² Pb sheets of various thicknesses (.5, 1, 2 X₀)

People: Bordeaux: D. Dumora, S. Incerti, Th. Reposeur, B.L.

LLR: G. Bogaert, I. Redondo

Help from M. Haguenauer and J. Bourotte (LLR and CERN)

Experimental setup

Source tests

high-gain amplifier

Summary of data points

Electrons:

Energy (GeV)	30	50	100	200	280
Pb thickness	•	· ·	0-11 X ₀ step: 1 X ₀	•	•
positions	2	4	2	4+18	4

Muons:

50 GeV, 2 positions

Calibration strategy

All we have for absolute calibration are muons (+source) E-deposits. Can we use the muon data alone (E_{dep} ~12 MeV) to establish the calibration up to tens of GeV?

Procedure:

Muons in Big Diodes (BD) corrected for attenuation*
Conversion Slope for BDs with high-gain amplifiers
Pulser: relative gains between low- and high-gain amplifiers
Conversion slopes for Big Diodes with low-gain amplifiers
Small-diode vs Big-diode correlation using beam data:
Conversion slopes for Small Diodes

*attenuation coefficients: Left/Right dependence on position

Energy calibration using a 50 GeV muon beam

9,99 keV/channet

channel 15 B.46 keV/channel

channel 29

channel 31

12

9.72 keV/channel

18 20 Energy (MeV)

norm 35

8.1 keV/channel

----- MC GEANT3

40

20

0

60

40

20

40

20

60

29

data

high-gain amplifier

Determination of the attenuation coefficients

Cross calibration of small-big diodes

GLAST ANCE

"Reconstructed" energy distributions from different ends/diodes

One plot per bar

Colors correspond to different diodes: blue, yellow: big diodes

green, red: small diodes

Preliminary results

Two sets of data are presented, corresponding to different positions with respect to the beam.

Longitudinal shower profile at 200 GeV

200 GeV

Longitudinal shower profile at 100 GeV

Longitudinal shower profile at 50 GeV

Longitudinal shower profile at 30 GeV

Transverse "shower profile" at 200 GeV

GSI experiment in 2003 (proposal)

In-orbit calibration

GLAS ANOE

Geomagnetic cutoff

CR energy spectrum

Use of the ionisation energy loss of cosmic-ray heavy ions

C, N, O, Mg, Si, Fe

"minimum-ionisation" peak

NRL 10/21/02minimum of ionisation

In-orbit calibration (2)

Simulated energy-loss distribution

We need to:

- know the CsI light function L(E,Z), non-linear because of quenching effects;
- test algorithms for rejecting reaction events (variation of Eloss between adjacent layers).

Quenching effects in CsI

High ionisation density → non-radiative decay channel

("activation-depletion" hypothesis, exciton destruction at activator sites, recombination...)

Low energy: Birk's formula

 $L(E) \propto E/(1+k_B dE/dx)$ k_B : quenching factor

High energy:

at a given dE/dx, E is higher for greater Z \rightarrow more δ electrons \rightarrow less quenching

Very scarce data at high energy!

Salamon and Ahlen

Examples of light functions

Function taken from Parlog et al. (INDRA) parameters adjusted from earlier GSI data

Results of previous run (S240)

Experimental setup

One single beam: 1.7 GeV/nucleon 58Ni

All fragments are produced simultaneously.
The energy is changed by varying the target thickness.
Great flexibility!

Beam time request

15 shifts (5 days) of 1.7 GeV/nucleon ⁵⁸Ni in 2003 10 shifts (3.3 days) granted by the PAC

- 3 shifts at $\theta=0^{\circ}$
- 3X2 shifts at $(\theta, \phi) = (30^{\circ}, 0^{\circ}), (60^{\circ}, 0^{\circ}), (30^{\circ}, 30^{\circ})$
- 3X1 shifts with degrader: C, Si, Fe
- 1 day of calibration of the FRS

